Lee Davison and R.A. Graham, Shock compression of solids

Reference	Remarks			
McQueen et al. [67M2]	12 rocks, 10 to 100 GPa			
Isbell et al. [6811]	Gun data to 500 GPa for 11 materials			
Group GMX-6 [69G2]	Published data reanalyzed using [70M1]			
Dick [70D1]	C ₆ H ₆ , CS ₂ , CCl ₄ , N ₂ , 19 to 63 GPa			
Dick et al. [70D2]	Solid argon, 1.8-6.45 GPa			
McQueen et al. [70M1]	60 technical materials, 5 standards			
Zharkov and Kalinin [71Z2]	Elements, alkali halides and rocks			
Carter et al. [71C2]	Al 2024, Cu, Ag, Na, Mo, Pd, Mg, MgO			
Fritz et al. [71F2]	NaCl crystals, 3 to 26 GPa			
Ahrens et al. [71A1]	Forsterite (Mg ₂ SiO ₄), 11 to 37 GPa			
Ahrens and Gaffney [71A2]	Enstatite (Mg _{0.86} Fe _{0.14})SiO ₃ , 6-48 GPa			
Lysne [72L3]	Organic liquids at low pressure			
Kalashnikov et al. [73K1]	Six calcite minerals, 10 to 100 GPa			
Gust et al. [73G6]	TiB ₂ , SiC, Be ₄ B to ~ 100 GPa			
Lysne and Hardesty [73L4]	Nitromethane			
Carter [73C3]	LiF, NaF, LiCl, LiBr, 7 to 100 GPa			
Dobratz [74D3]	25 unreacted explosives			
van Thiel et al. [74V1]	Liquid deuterium, 20 and 90 GPa			
Simakov et al. [74S4]	12 minerals, 10 to 300 GPa			
Syono et al. [74S7]	Fe_2O_3 and Fe_3O_4 to 50 GPa			
Syono et al. [74S8]	TiO			
Mitchell et al. [74M1]	Brass at 50 and 100 GPa, various temp.			
Morgan [74M2]	Platinum, 290 to 680 GPa			
Barker [75B1]	α-phase iron			
Morgan [75M1]	Stainless steel alloy 347, 183-384 GPa			
Bakanova et al. [76B1]	Water, 3–50 GPa			
Goto et al. [76G2]	GaAs to 40 GPa			
Ragan et al. [77R1]	Molybdenum at 2000 GPa			
Al'tshuler et al. [77A1]	Latest Soviet work at extreme pressure			
McMahan et al. [77M6]	Metallic iodine, 74-180 GPa			
Al'tshuler and Pavlovskii [71A4]	Clay and clay shale, 3 to 77 GPa			
Kalashnikov et al. [72K1]	Polytetrafluoroethylene 1.4 to 175 GPa			
Podurets et al. [72P1]	Water to 1400 GPa. See also [76B1]			
Grady et al. [76G3]	Dolomite, 18 to 42 GPa			
Mitchell and Nellis [79M1]	Water, 30 to 220 GPa			
Ahrens [79A1]	Pyrrhotite (Fee S) 3 to 158 GPa			

Table 3.3 Selected hydrodynamic data

suggest that some downward curvature can be expected to become apparent when the range of u is great enough. In the latest work of Al'tshuler et al. [77A1], in which data at extreme pressures are considered, the slope of the (U, u) Hugoniot is found to decrease significantly with increasing compression. In spite of these considerations, the linearity of the (U, u) Hugoniot curve is so common an outcome of a program of shock-compression experiments that instances in which pronounced deviations are observed deserve examination for evidence of elastic-plastic response, collapse of porosity unintentionally present in the material, a phase transformation, systematic error in measurement, or other identifiable cause.

Example: the high-pressure Hugoniot curve of copper. It is not possible to discuss all of the available (U, u) Hugoniot data in a review of this length, but it seems worthwhile to give a flavor of the work that has been done by considering, as an example, the data that describe the Hugoniot

277

reference	Pressures (GPa)	No. of data	Loading method ^{a)}	Detector method ^{b)}	Interpretation method ^{c)}	Hugoniot U, m/s	Remarks
an [55W1]	18-46	12	CD	F	FSV		
2]	22-51	5	CD	F	FSV and R	3944 + 1.514u	aluminum st
3A2]	45-380	3	U	Р	R	3900 + 1.46u	iron standar
DAI	108-418	3	FP (U)	Р	D	4200 + 1.41u	
rsh [60M1]	88 and 144	3 and 3	FP	F	R	3958 + 1.497u	brass standa
2A1]	907	1	U	Р	D		iron striker :
on (1964), [77V1]	72-127	9	U	F	D	4640 + 0.98u	
ignon (1964), [77V1]	74-164	45	U	P, F	U	4120 + 1.81u	
é [68A4]	20-441	16	CD, FP, I	F	FSV	$3940 + 1.55u - 1.5 \times 10^{-5} (u)^2$	ten highest convergent
	99-450	12	G	Р	D	3964 + 1.463u	
2]	1569	1	N	Р	R		lead standar polated). p corrected in [77A1]
0M1]	8–217	127	CD, FP	F	FSV, R	3940 + 1.489u	Al, Fe and U standards
3]	3800	1	Ν	Р	R		lead standar polated). p corrected in in [77A1]

 Table 3.4

 Measurements of the high-pressure Hugoniot curve of copper

etonation, FP = explosively driven impactor, G = gun-driven impactor, I = impactor driven by convergent detonation, N = nuclear exped, U = unspecified. We believe pressures in the range ~200-1000 GPa to have been achieved by method I (except [6811]). act pins, F = optical flasher.

ct or deceleration method, R = impedance mismatch or reflection method, FSV = velocity of the stress-free surface measured.